
PHOTOANIM JAVASCRIPT API V3.0

1 INTRODUCTION

The PhotoAnim API is a high level API, requiring very little knowledge from HTML, JavaScript and 3D

techniques. Its main purpose is to allow self-hosting and fine control of animations developed with PhotoAnim

for Windows or with 3dthis.com online apps.

A typical roadmap is as follows:

- Create a model template using PhotoAnim for Windows or a 3dthis.com online app. Note that PhotoAnim for

Windows can import models in *.OBJ and *.3DS formats.

- Publish the model on 3dthis.com (public, private or unlisted).

- Follow this document to download and animate your model, add fine controls and host the resulting

animation on your website.

NOTE: If you are familiar with 3D vertices, textures, normals, trajectories, etc… then you may also create

animations from scratch, see §7

2 CREATION

The PhotoAnim API JavaScript code can be found under https://3dthis.com/developer/photoanim.js

Your animation code can be found under https://3dthis.com/download.htm or you may use this test animation

https://3dthis.com/getanim.php?h=NTc0OTAx. The default file name is paJSON.js

Between <head> and </head> include:

 <script src=”photoanim.js”></script>

 <script src=”paJSON.js”></script>

In the <body> define the canvas, where the animation should be played:

 <canvas id=”mycanvas” width=”640” height=”480”></canvas>

Finally, include the following Javascript code:

 <script>

 var pagl = new PhotoAnim(”mycanvas”, paJSON);

 renderFrame();

 function renderFrame(){

 pagl.renderFrame();

 window.requestAnimationFrame(renderFrame);

 }

 </script>

NOTES

1. You can have only one animation per page. If you want several animations, then you should play them inside

an <iframe>

2. Having several animations running at the same time may slow down the rendering device.

3. You may also define animations from scratch, see §7.

http://3dthis.com/developer/papiv30.pdf

2017-12-19

©2015-2017 Chris Deforeit

http://photoanim.com/
http://photoanim.com/
https://3dthis.com/
https://3dthis.com/
https://3dthis.com/developer/photoanim.js
https://3dthis.com/download.htm
https://3dthis.com/getanim.php?h=NTc0OTAx
http://3dthis.com/developer/papiv30.pdf

3 ANIMATOR

An animator defines the timely behavior of a given parameter. Most animation parameters like camera

position, light, objects use animators. All animators have default values, so only a few property changes are

necessary to create new effects.

animator = {startvalue:float, value:float, min:float, max:float, delay:float,

speed:float, random:float, alternate:bool, loop:bool};

Most animator values range from -1 to +1, except angle animators which use degrees.

Animator

Property Type Default Value Description

startvalue float 0 Start value of the animator when animation is started

value float - Current animator value. Changing this value has

immediate effect on next frame redraw.

min float -bigvalue Minimum animator value

max float +bigvalue Maximum animator value

delay float 0 Animator start delay in seconds

speed float 0 Animator speed in units/second

random float 0 Random amount added to speed to create random

effects

alternate boolean true if true, run animator in opposite time direction when

max is reached.

loop boolean true if true, run animator from min to max (to min if

alternate) in a loop

run boolean true if loop is false, run will be set to false when min/max

value is reached. Setting it to true will restart

animator.

Example

Define an angle animator which starts at 10° and runs a continuous circle at 45°/sec

myangle = {startvalue:10, min:-180, max:180, speed:45, alternate:false,

loop:true};

NOTE: Animators have additional properties, like ability to follow trajectories, sync to variables… see §6.3.

4 PROPERTIES

Only most used properties are listed here. For a full properties list refer to §7.5

4.1 MAIN PROPERTIES

Property Type Description

pagl.error read false if no error, or error message (WebGL not supported)

pagl.pause Read/write true to pause animation, false to run it

pagl.oldtime write set to -1 to restart animation

pagl.refresh write true to request frame rendering

pagl.canvas read a reference to the canvas object

Examples

Use start/stop buttons to run animation:
<input type = ”button” value = ”Start” onclick = ”pagl.pause = false”>

<input type = “button” value = “Stop” onclick = “pagl.pause = true”>

Change camera angle:
pagl.global.camera.yrot.value = 45;

pagl.refresh = true;

4.2 TRIGGERING CONSTANTS

Following global constants are used for triggering:

trigger = NONE | ONLOAD | ONCLICK | ONOVER

NONE No triggering occurs

ONLOAD Triggering occurs on page load

ONCLICK Triggering occurs when the user clicks or taps the canvas

ONOVER Triggering occurs when the user hovers the mouse on the canvas

4.3 AXIS COORDINATES

The axis coordinates follow the WebGL standard: Origin in the middle of canvas, X axis towards right, Y axis

towards top, Z axis towards viewer.

The scale is from -.5 to +.5 in the X direction. If image format is 4/3 then Y scale would be from -.375 to +.375.

4.4 ALLOWED USER ACTIONS

Allowed user actions (mouse or touch) properties are accessed by pagl.global.user

Property Type Default Value Description

rot boolean true user is allowed to rotate camera

mov boolean true user is allowed to translate camera

zoom boolean true user is allowed to zoom camera lens

rotlimit Boolean false if true, camera rotation is limited to the min/max

values from the xrot, yrot, zrot camera animators.

4.5 CAMERA

Camera properties are accessed by pagl.global.camera

Property Type Default Value Description

start trigger ONLOAD Camera animation trigger mode

xmov animator min=-1, max=1 move camera along X axis

ymov animator min=-1, max=1 move camera along Y axis

zmov animator min=-1, max=1 move camera along Z axis (dolly)

zoom animator startvalue=.8

min=.1, max=10

Camera lens zoom

xrot animator min=-180, max=180 Rotate around X axis (vertical rotation)

yrot animator min=-180, max=180 Rotate around Y axis (horizontal rotation)

zrot animator min=-180, max=180 Rotate around Z axis

Example: Rotate camera 360° around subject in 10s when user clicks the canvas

var cam = pagl.global.camera;

cam.start = ONCLICK;

cam.yrot.max = 360; cam.yrot.speed = 36; cam.yrot.loop = false;

cam.yrot.alternate = false;

Run this example :

4.6 LIGHT

Light properties are accessed by pagl.global.light

Property Type Default Value Description

start trigger ONLOAD Light animation trigger mode

vector [x, y, z] [0, 0, 1] Initial light direction (default front).

Typical values:

Top left = [.408, -.408, .816]

Top right = [-.408, -.408, .816]

Bottom left = [.408, .408, .816]

Bottom right = [-.408, .408, .816]

followcam boolean true true if light is attached to camera, set it to false if

xrot/yrot are used.

xrot animator min=-180, max=180 Rotate light around X axis (vertical rotation)

yrot animator min=-180, max=180 Rotate light around Y axis (horizontal rotation)

http://3dthis.com/developer/papi1.htm

shading animator min=0, max=1.5 0 = no shading, 1.5 = very strong shading

ambient animator min=-1, max=1 Amount of ambient light.

-1 = no ambient light, 1 = strong ambient light,

defaults to 0 (average ambient light)

back animator startvalue=.5

min=0, max=1

Amount of back light

specular animator min=0, max=1 Amount of specular light (reflection),

defaults to 0.

Example: Rotate light around model, control shading and specular with sliders.

Run this example

4.7 ANIMATED OBJECTS

Up to 64 objects(*) can be defined and each object can be animated separately.

An individual object is accessed by pagl.objects[i] where i is the object number from 0.

Each animation object has following properties:

Property Type Default Value Description

center [x, y, z] - Object center point, all moves/rotates are relative to

center

xmov animator animator default Move object along X axis

ymov animator animator default Move object along Y axis

zmov animator animator default Move object along Z axis

xrot animator animator default Rotate object around X (center relative)

yrot animator animator default Rotate object around Y (center relative)

zrot animator animator default Rotate object around Z (center relative)

scale animator startvalue = 1 Scale object

http://3dthis.com/developer/papi2.htm

inflate animator startvalue = 1 Z factor from object. If inflate = 0 object is flat on X Y

plane

aspect animator startvalue=1 Y/X factor from object. If aspect = 0 object is flat on X

Z plane.

brightness animator startvalue=0

min = -1, max = 1

brightness correction. If -1, object is black

contrast animator startvalue=0

min = -1, max = 1

contrast correction, if -1, object has no contrast

hue animator startvalue=0

min = -1, max = 1

hue correction from -180° to 180°

saturation animator startvalue=0

min = -1, max = 1

saturation correction. If -1, object is displayed in black

& white

red(**) animator startvalue=0

min = -1, max = 1

red correction. If -1, red is removed

green(**) animator startvalue=0

min = -1, max = 1

green correction. If -1, green is removed

blue(**) animator startvalue=0

min = -1, max = 1

blue correction. If -1, blue is removed

opacity animator startvalue=1

min = 0, max = 1

0: Object is fully transparent, 1: Object is fully opaque

objects animators share a common trigger defined by pagl.main.start = trigger (NONE | ONLOAD

|ONOVER | ONCLICK). The default value is main.start = ONLOAD.

Notes:

(*) Older phones and tablets do not support 64 objects.

(**)red/green/blue are applied after hue and saturation.

Example: 35 spheres with random animation in the X,Y,Z directions, with sequential brightness control

Run this example

5 METHODS

http://3dthis.com/developer/papi3.htm

Only most used methods are listed here. For a full methods list refer to §7.6

Method Description

renderFrame() To be called in the window.requestAnimationFrame callback. If pagl.pause

= true renderFrame has no effect, except if pagl.refresh has been set to

true.

resizeCanvas() To be called in case of canvas resize:

 pagl.canvas.width = 800;

 pagl.resizeCanvas();

updateBgrdColor(r, g, b, a) Change the background color, values are from 0 to 1, “a” is the full

animation opacity.

 pagl.updateBgrdColor(0 , 0, 1, 1); //blue background

6 ADVANCED FEATURES

6.1 MOUSE/TOUCH CAPTURE

Mouse/touch capture is useful to override the default API behavior. A typical application is to individually

control objects according to user gesture.

Mouse/touch capture is implemented using a callback function defined at creation time:

var pagl = new PhotoAnim(canvas$str, paJSON, onMouse);

function onMouse(event){…}

Following global constants are used for mouse/touch capture actions:

action = NONE, ROTATE, TRANSLATE, ZOOM, INFO

Capture action property can be set with pagl.mouseAction

Property

Default

Action Valid Actions Description

hover INFO NONE, INFO Define action when mouse is hovered on canvas (no

button, no key)

drag ROTATE NONE, ROTATE,

TRANSLATE, ZOOM

Define action when mouse is dragged without right

button and without SHIFT/CTRL key

dragshift TRANSLATE NONE, ROTATE,

TRANSLATE, ZOOM

Define action when mouse is dragged with SHIFT key

dragctrl ZOOM NONE, ROTATE,

TRANSLATE, ZOOM

Define action when mouse is dragged with CTRL key

or with right button.

touch1 ROTATE NONE, ROTATE,

TRANSLATE, ZOOM

Define action for single finger touch

touch2pinch ZOOM NONE, ZOOM Define action for 2 fingers pinch

touch2pan TRANSLATE NONE, ROTATE,

TRANSLATE, ZOOM

Define action for 2 fingers pan

wheel ZOOM NONE, ROTATE,

TRANSLATE, ZOOM

Define action when mouse wheel is used

click INFO NONE, INFO Define action when canvas is clicked or touched

onMouse(event) is called upon user action. It should return true if it processes the action.

onMouse event format:

event.action event properties Description

NONE - Do not process this action

ROTATE dx, dy delta rotate by dx, dy in degrees

(xrot.value += dx; yrot.value += dy;)

TRANSLATE dx, dy delta translate by dx, dy

(xmov.value += dx; ymov.value += dy;)

ZOOM kzoom multiply camera zoom or object scale by kzoom

(zoom.value *= kzoom)

INFO x, y x, y are in webGL coordinates (relative to canvas

center). Useful to detect an object under cursor or to

link to an url on click.

Examples:

1- Shift object0 when user drags canvas or uses single finger touch:

pagl.mouseAction.drag = pagl.mouseAction.touch1 = TRANSLATE;

function onMouse(event){

 if (event == TRANSLATE){

 pagl.objects[0].xmov.value += event.dx;

 pagl.objects[0].ymov.value += event.dy;

 return true; //tell processed

 }

}

2- A very simple object detect and move: A sphere and a cylinder, highlights the object when mouse hovers,

moves the object on drag.

Run this example

6.2 BACKGROUND IMAGE

Animations produced with PhotoAnim for Windows or 3Dthis may include a background image. The API allows

animating this image, by defining property bgrd in pagl.global

bgrd property Type Default Value Description

show boolean true Show or hide the background image

start trigger NONE Define background image animation trigger

xmov animator animator default Move background image along X axis (no effect if

followcam = true)

ymov animator animator default Move background image along Y axis (no effect if

followcam = true)

zoom float 1 Background image scale

followcam boolean false Background image position follows camera rotation

followamount float 1 If followcam = true, defines camera rotation follow

amount (can be negative).

Example:

Use mouse capture to control background image position.

http://3dthis.com/developer/papi4.htm

Run this example

6.3 TRAJECTORIES

Trajectories allow moving an object in a predefined way. A trajectory can be defined on any animator by

specifying property trajx. Once trajx is defined, the other animator properties are ignored.

trajx is the index into a trajectory pool array accessed by pagl.trajectory.

Each trajectory entry has following format: sz, value, value… value

where sz is the trajectory size.

Trajectory durations are defined by pagl.global.duration in seconds (default 10 seconds). All

trajectories have same duration.

A single special animator pagl.main.main has only useful properties run, value, loop and alternate. This

allows looping and reverse play (default loop=true, alternate=true).

Example: We want object0 to move on a square x,y pattern in 5 seconds

var traj = pagl.trajectory;

var obj = pagl.objects[0];

obj.xmov.trajx = traj.length; // xmov traj start index

traj.push(5); //size

traj.push(-.25); traj.push(-.25); traj.push(.25); traj.push(.25);

traj.push(-.25);

obj.ymov.trajx = traj.length; // ymov traj start index

traj.push(5);

traj.push(-.25); traj.push(.25); traj.push(.25); traj.push(-.25);

traj.push(-.25);

pagl.main.main.alternate = false; // keep only loop

pagl.global.duration = 5;

Run this example

Note: A new “replay” global animator has been introduced with V3.0, see §9 for a detailed description of

objects and vertices trajectories.

http://3dthis.com/developer/papi5.htm
http://3dthis.com/developer/papi6.htm

7 API FULL REFERENCE CHART

This section assumes familiarity with common 3D principles and WebGL. It may be useful when creating

animations from scratch.

Optional parameters are shown in italic

7.1 CREATION

var pagl = new PhotoAnim(canvas$str, animdef, onmouse, ontexloaded);

canvas$str: The id string of the rendering canvas

animdef: JSONstring | myAnim

JSONstring: A JSON encoded string, compressed, as downloaded from http://3dthis.com/download.htm

myAnim: [header, mesh, global, main]

onmouse: Optional callback on user mouse/touch actions, see §6.1

ontexloaded: Optional callback when texture is loaded (no parameters)

if canvas$str is false, animdef will just be parsed and no further action will occur. The parsed animation object

can then be accessed by pagl.padef.

7.2 TRIGGERING CONSTANTS (trigger)

NONE, ONLOAD, ONCLICK, ONOVER (globals)

7.3 ANIMATOR

An animator defines the timely behavior of a given parameter.

var animator = {startvalue:float, value:float, min:float, max:float,

delay:float, speed:float, random:float, alternate:bool, loop:bool,

run:bool, trajx:int, trajpos:bool, trajzoom:bool, sync:”property”}

Defaults: startvalue:0, value:startvalue, min:-bigvalue, max:+bigvalue, delay/speed/random:0,

alternate/loop/run:true, trajx, trajpos ,trajzoom, sync: undefined.

trajx is the start trajectory index into vxobjtraj array (see §7.4.2.4), trajx=0 or undefined means no trajectory.

if a trajectory is defined, setting trajpos true adds startvalue to the current trajectory value, setting trajzoom

true multiplies the current trajectory value by startvalue. The main purpose is to allow user actions even when

a trajectory is defined.

sync allows synchronizing the animator on a property. For example, if we want to synchronize an object

rotation to the camera rotation, we can define sync:”cyrot” because cyrot is the current camera y

rotation.

http://3dthis.com/download.htm

7.4 ANIMATION DEFINITION

var myAnim = [header, mesh, global, main];

After PhotoAnim creation, myAnim can be accessed by pagl.padef

7.4.1 pagl.header (myAnim[0])

header = {bgrdcolor:array, aspect:float, projection:obj, vrphoto:obj}

bgrdcolor: [r, g, b, a] rgba range from 0 to 1, ‘a’ is full animation opacity.

aspect: defaults to canvas.width/canvas.height. May be used when the texture aspect is different from the

original image aspect.

projection: {ortho:[l, r, b, t]} or {perspective:[fovy, aspect, znear, zfar]}

default projection: {perspective:[45, 1, .1, 100]}

vrphoto: Allows defining a virtual reality sequence of images, see new features V2.1 §8.

7.4.2 pagl.mesh (myAnim[1])

mesh = [vertices, texcoord, triangles, vxobjtraj, texture];

7.4.2.1 mesh[0] - vertices array

vertices = [x, y, z, trajx, nx, ny, nz, …];

7 values for each vertex.

x, y, z: vertex coordinates

trajx: vertex trajectory, start index into vxobjtraj, allows vertex animation, see §9.

special values: trajx=0 – no trajectory, trajx=-1 – vertex belongs to background image.

nx, ny, nz: vertex normal vector – can be computed using method calcNormals(vertices)

Note: before V3.0, vertices count was limited to 65536. There is no limitation now, as most WebGL

implementations accept extension OES_element_index_uint, which specifies vertices indexes on 32 bits.

7.4.2.2 mesh[1] - texcoord array

texcoord = [u, v, …]

2 values for each entry, parallel to vertices.

Count of entries should be same as vertices count (vertices.length/7 == texcoord.length/2)

u, v define a point from the texture image, u, v coordinates are relative to texture top left, u towards right and

v towards bottom, in the range 0, 1.

7.4.2.3 mesh[2] - triangles array

triangles = [vx1, vx2, vx3, …]

3 values for each entry, vertex indexes. Triangles should be oriented CCW for external faces.

7.4.2.4 mesh[3] - vxobjtraj array

Trajectory pool, holding vertices and animators trajectories.

vxobjtraj[0] must be 0 See §9 for a full description of trajectories.

7.4.2.5 mesh[4] - texture

texture can be an url string, a dataurl string, a canvas element or a video element.

dataurl is the recommended way as it allows a single file for animation definition. Also it prevents browser

from throwing cross-origin exceptions when run locally on a computer.

texture url/dataurl supported image formats are jpeg and png.

texture width and height must be a power of two. Practical maximum texture size is 4096x4096 to be playable

on most recent devices.

Only one texture is supported. If an animation needs multiple textures, then they should be merged into a

single texture image (PhotoAnim for Windows does that automatically).

7.4.3 pagl.global (myAnim[2])

global = {duration:float, bgrd:obj, camera:obj, light:obj, user:obj};

duration: needed only if active trajectories, default value = 10 seconds

7.4.3.1 global.bgrd

Defines the animation of an optional background image. A background image should be included in the texture

and is identified by vertices trajx = -1

bgrd = {show:bool, start:trigger, xmov:animator, ymov:animator, zoom:float,

followcam:bool, followamount:float};

defaults: show:true, start:NONE, zoom:1, followcam:false, followamount:1

7.4.3.2 global.camera

Defines camera animation

camera = {movecamera:bool, start:trigger, xmov:animator, ymov:animator,

zmov:animator, xrot:animator, yrot: animator, zrot:animator, zoom:animator}

defaults: movecamera:true, start:ONLOAD, zoom.startvalue:.8

if movecamera is false, the scenery will be moved.

7.4.3.3 global.light

Defines light animation

light = {start:trigger, vector:[x, y, z], followcam:bool, xrot:animator,

yrot:animator, shading:animator, ambient:animator, back:animator,

specular:animator}

defaults: start:ONLOAD, vector:[0, 0, 1], followcam:true, back.startvalue:.5

7.4.3.4 global.user

Defines allowed user mouse/touch actions

user = {rot:bool, mov:bool, zoom:bool, rotlimit:bool}

Default: rot = mov = zoom = true, rotlimit=false

If rotlimit is true, the user cannot rotate the camera more than the max/min values specified in xrot, yrot.

7.4.4 pagl.main (myAnim[3])

main = {main:animator, replay:animator, start:trigger, objs:[object1, …

objectn]};

main.main and main.replay are used to control objects and vertices trajectories. See §9.

start defaults to ONLOAD and controls the main animator.

Up to 64 objects can be defined by main.objs[], each animated separately

7.4.5 pagl.objects (main.objs) -> object = pagl.objects[i]

object = {center:[x, y, z], vxstart:int, xmov:animator, ymov:animator,

zmov:animator, scale:animator, inflate:animator, aspect:animator,

xrot:animator, yrot:animator, zrot:animator, brightness:animator,

contrast:animator, hue:animator, saturation:animator, red:animator,

green:animator, blue:animator, opacity:animator};

center: object center point, the object will move/scale around this point

vxstart: vertex start index for this object, successive objects vxstart should be in increasing order.

inflate: object Z amount

aspect: object Y/X amount

defaults:

scale, inflate, aspect, opacity – startvalue:1

brightness, contrast, hue, saturation, red, green, blue – min:-1, max:1

7.5 PROPERTIES

Property Type Description

pagl.error read false if no error, or error message (WebGL not supported)

pagl.pause Read/write true to pause animation, false to run it

pagl.oldtime write set to -1 to restart animation

pagl.refresh write true to request frame rendering

pagl.canvas read a reference to the canvas object

pagl.hasanim read true if at least one animator is active

pagl.hastrigger read true if some animation is triggered by a mouse/touch action

pagl.mouseAction read/write see mouse/touch capture

pagl.padef read/write reference to myAnim

pagl.header read/write reference to myAnim[0]

pagl.mesh read/write reference to myAnim[1]

pagl.global read/write reference to myAnim[2]

pagl.main read/write reference to myAnim[3]

pagl.objects read/write reference to main.objs object array

pagl.vertices read/write reference to mesh[0]

pagl.texcoord read/write reference to mesh[1]

pagl.triangles read/write reference to mesh[2]

pagl.trajectory read/write reference to mesh[3]

pagl.forcedtime write in ms, force play at a specific time, see §8.

cxrot, cyrot, czrot,

cxmov, cymov, ctransl

read current camera position

7.6 METHODS

Method Description

renderFrame() To be called in the window.requestAnimationFrame callback. If pagl.pause

= true renderFrame has no effect, except if pagl.refresh has been set to

true.

resizeCanvas() To be called in case of canvas resize:

 pagl.canvas.width = 800;

 pagl.resizeCanvas();

updateBgrdColor(r, g, b, a) Change the background color, values are from 0 to 1, “a” is the full

animation opacity.

 pagl.updateBgrdColor(0 , 0, 1, 1); //blue background

updateLight() To be called after a change in global.light.vector

updateProjection() To be called after a change in header.projection

updateTexture(tex) tex can be a canvas/video or an image string (url or dataurl)

calcNormals(vertices) compute vertices normal. ‘vertices’ should have same format as in

mesh.vertices. Note: this is computer intensive, do not call it from the

window.requestAnimationFrame callback…

refreshVertices(vertices) To be called after a change in vertices (mesh[0]), including after

calcNormals

updateTexcoord(texcoord) To be called after a change in texcoord (mesh[1])

updateBgrdShow To be called after a change in global.bgrd.show

padefCheck() For debugging, checks the validity from myAnim and logs errors on browser

console. Is also called at PhotoAnim creation time if PADEBUG = true

drawFrame(frame) Used in Virtual Reality mode do render a specific frame, see $8.

7.7 OPTIONAL CALLBACKS

7.7.1 onmouse(event) – defined at PhotoAnim creation time

See Mouse/Touch capture

7.7.2 ontexloaded() – defined at PhotoAnim creation time

Used to display a ‘load in progress’ message/icon when the texture image is an external resource

7.7.3 ontrigger

pagl.ontrigger = myFunction;

function myFunction(){…}

myFunction is called when an animation is started or stopped by an user action (ONOVER or ONCLICK). Useful

to cancel “click to start” messages or control sound.

8 NEW FEATURES V2.1

8.1 FORCED TIME

The forcedtime property in milliseconds allows rendering a frame at a given time outside of real time. It is

useful to convert an animation to a different format, like animated GIF.

Example:

pagl.oldtime = -1;

pagl.forcedtime = 0;

pagl.renderFrame(); // render frame at time 0

//… do something with the animation canvas

pagl.forcedtime = 100; // render frame at time 100ms

pagl.renderFrame();

// … do something with the animation canvas

8.2 VIRTUAL REALITY HANDLING

A texture can hold a series of individual pictures, which can be played like a video, with added user

interactivity: The user can control with mouse/fingers or device orientation which picture is being played. This

is used on 3Dthis.com for apps Live Selfie and iVideo.

Virtual Reality is defined by the header.vrphoto object (myAnim[0].vrphoto)

vrphoto = {shoots:int, dangle:float, cols:int, texkw:float, texkh:float};

shoots: total number of pictures in the image

dangle: angle in degrees between each picture

cols: number of picture columns in the texture

texkw: texture width coefficient (picture_width/texture_width)

texkh: texture height coefficient (picture_height/texture_height)

Vertices and triangles must be organized as follows:

var vertices = [-.5,.5,0, 0, 0, 0, 1, .5,.5, 0, 0, 0, 0, 1, .5,-.5, 0, 0,

 0, 0, 1, -.5,-.5, 0, 0, 0, 0, 1];

var texcoord = [0,0, 0,0, 0,0, 0,0];

var triangles = [0,2,1, 0,3,2];

All picture sizes should be identical.

Example:

The following texture consists of 8 pictures, organized in 2 rows of 4 columns. Each picture is 256x256 for a

total texture size of 2048 x 1024.

var vrphoto = {shoots:8, dangle:45, cols:4, texkw:.25, texkh:.5};

Run this example

Animation is controlled by the camera yrot animator (pagl.global.camera.yrot).

Setting yrot.min / yrot.max determines the first and last frames limits. To play all frames, set yrot.min to 0 and

yrot.max to vrphoto.shoots * vrphoto.dangle.

For a 360° view, like in the example above, set yrot.min = -bigvalue, yrot.max = bigvalue.

Method drawFrame(frame) may also be invoked to render a given frame.

9 TRAJECTORIES

Trajectories are the key to 3D animation. The API implements object trajectories (i.e. camera trajectories),

individual vertex trajectory and shared vertices trajectories. Trajectories are controlled by 2 special animators:

pagl.main.main and pagl.main.replay. Shared vertices trajectories are very useful to animate complex 3D

models like facial expressions with a minimum data amount. This is known as mesh distortion.

All trajectories are defined in a single array pagl.trajectory, the first array entry must be zero.

9.1 MAIN ANIMATOR

pagl.main.main is preset with values min=0, max=1, startvalue=0, speed=1/global.duration. These properties

should not be changed. Properties which can be modified are main.value (from 0 to 1), main.run,

main.alternate, main.loop

9.2 REPLAY ANIMATOR

pagl.main.replay has the following special format:

pagl.main.replay = {duration:float, time:float, run:bool, audio:url,

offset:float, onended:function}

It must be created using pagl.addReplay(duration), which sets run to false and time to 0.

duration: total animation duration in seconds.

time: current time from 0 to 1.

audio: optional, not handled by the API

offset; in seconds, optional, offset between audio playback and animation, not handled by the API.

onended: optional function called when time reaches 1

The replay animator is forward only and loop. To stop it when it finishes playback, the onended function must

set run = false.

9.3 OBJECTS TRAJECTORIES

http://3dthis.com/developer/papi8.htm

An object trajectory can be defined on any animator except main.main and main.replay by setting property

trajx, which is the trajectory start index into pagl.trajectory.

The trajectory format is

sz, value, value, …

If sz is >0 then sz values follow and are related to the main animator.

If sz is <0 then –sz values follow and are related to the replay animator.

Example: rotate camera from -90 to 90 degrees using replay animator

pagl.trajectory = [0, -2, -90, 90];

pagl.global.camera.yrot.trajx = 1;

9.4 VERTICES TRAJECTORIES

A vertex trajectory can be defined on any vertex by setting pagl.vertices[7*vx + 3] to the trajectory index start

in pagl.trajectory.

9.4.1 SINGLE VERTEX TRAJECTORY

sz, tx,ty,tz, tx,ty,tz, …

with sz>0 being the number of triplets (tx,ty,tz)

In this case, the main.main animator is used and the tx, ty, tz values are added to the initial vertices x, y, z.

9.4.2 SHARED VERTEX TRAJECTORY

n, y,kx,ky,kz, y,kx,ky,kz…

with n < 0, -n being the number of y,kx,ky,kz entries

y is a shared trajectory start index into pagl.trajectory. The shared trajectory format is

sz, value,value,….

If sz > 0, sz values follow and main.main animator is used.

If sz < 0, -sz values follow and main.replay animator is used.

 kx, ky, kz are weights on the shared trajectory values:

The original x, y, z vertex value is replaced by x + kx * value, y + ky * value, z + kz * value.

Note that this allows a vertex to share multiple trajectories. Typically, on face animation, a vertex position may

depend on several key dots like mouth opening or mouth width.

10 RESERVED SYMBOLS, DEBUGGING AND LIMITS

10.1 RESERVED SYMBOLS

Following global symbols are reserved by the API and should not be used/modified by other JavaScript code:

CanvasMatrix4, vertexshader, fragmentshader, shaderproblem, gphotoanim, PA_InitHandlers,

PA_Grid_Mesh, NONE, ONLOAD, ONOVER, ONCLICK, ROTATE, TRANSLATE, ZOOM, INFO

10.2 DEBUGGING

All examples from this documentation can be run locally on computer (no need to upload to a server).

However, when using external resources like image textures or video, cross-origin security errors may be

thrown by some browsers (i.e. Chrome). In this case they must be run from a server.

Setting PADEBUG to true, allows checking the animation definition when creating PhotoAnim. Potential errors

are reported on the browser console.

10.3 LIMITS

Maximum number of objects: 64, may be less on older mobile devices.

Maximum texture size: 4096x4096 px (not checked but advisable to be compatible with most platforms)

11 CONTACT AND FEEDBACK

Your feedback is highly welcomed!!!

Please send any comment or bug report to webmaster@3dthis.com

mailto:webmaster@3dthis.com

